Surname				Cer Num		Candidate Number		
First name(s)					2			
	GCE AS				edı			
wjec cbac	B410U10-1	8410U10-1						
	TUESDAY, 16 MAY 2023 – MORNING							
	CHEMISTRY – AS component 1							
	The Language of Che and Simple Reactions	-	ruct	ure of	Matter			
	1 hour 30 minutes							
				For Ex	aminer's us	e only		
			Qu	estion	Maximum Mark	Mark Awarded		
ADDITIONAL M	ATERIAI S	Section A	1.	to 6.	10			
-	examination paper,	Section B		7.	10			
you will need a: calculator;		·		8.	11			
 Data Booklet 	supplied by WJEC.			9.	16			
INSTRUCTIONS	TO CANDIDATES			10.	15			
Use black ink or gel pen or correc	black ball-point pen. Do not us tion fluid.	se		11.	8			
You may use a p	encil for graphs and diagrams	-		12	10			
number in the sp	, centre number and candidate aces at the top of this page.	2	1	otal	80			
	wer all questions. wer all questions.							

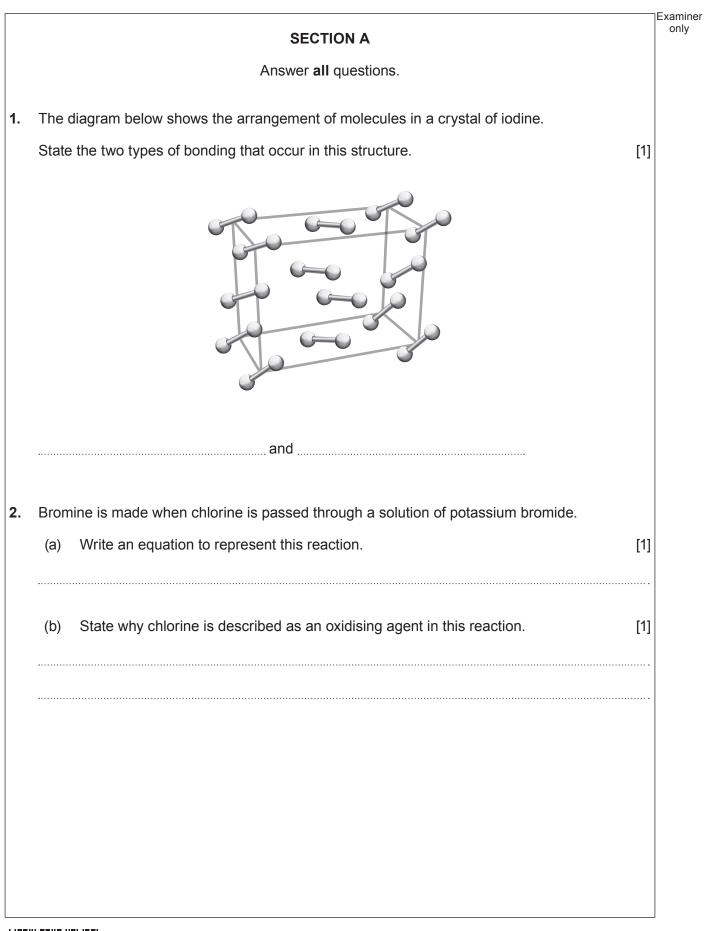
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.


The assessment of the quality of extended response (QER) will take place in Q.10(b).

PMT

B410U101 01

© WJEC CBAC Ltd. PJ/GJR*(S23-B410U10-1)

2

B410U101 03

3.	Actinium-236 ha	s a half-li	fe of 72s.							Examiner only
	Calculate the ma	ass remai	ning from	a 16g sar	nple after	6 minutes	S.		[1]
						Ma	ss =			g
4.	(a) Explain w	hy some o	covalent b	onds are	polar.				[1]
	(b) On the dis		ou mork t	ho lorgeo	t normon	ant dinala			F	۰. ۱۱ ک
	(b) On the dia	igram ber	ow mark t						L	
					H 					
				Н Шштт	ĊH					
				CI						
5.	The first eight io	nisation e	nerav valı	ues for an	element a	are shown	below.			
	State to which g								[1]
		1st	2nd	3rd	4th	5th	6th	7th	8th	
lo	nisation energy/ kJ mol ⁻¹	1670	3380	6045	8415	11075	15050	17905	91655	-
			1	1	1	1	1		1	
	Group									
	03	© WJEC C	BAC Ltd.	(B410L	J10-1)				Turn ove	r.

6.	(a)	Give the meaning of the term empirical formula.	[1]	Examiner only
	(b)	It was found that a compound contained 6.10g of copper, 5.35g of iron and 6.16g of sulfur only .		
		Calculate the empirical formula of this compound.	[2]	
		Empirical formula		
				10
	04			

4

B410U101 05

		SECTION B	Examine only
		Answer all questions.	
7.	(a)	BF_3 and NF_3 have similar molecular formulae.	
		Explain why the shapes of their molecules are different.	3]
	•••••		
	•••••		
	•••••		
	(b)	CH_3CH_2OH and CH_3CH_2SH also have similar formulae but they boil at very different temperatures.	
		Explain the difference in boiling temperatures.	3]
	•••••		
	•••••		

- (c) A student completed two titration experiments but made some fundamental errors in the analysis of the results.
 - (i) Using the following results from the first experiment he determined the mean volume to be 24.48 cm^3 .

Explain the error that he made and calculate the correct value.

[2]

Titration	1	2	3
Initial reading/cm ³	0.00	0.30	0.10
Final reading/cm ³	24.85	24.55	24.45
Titre/cm ³	24.85	24.25	24.35

(ii)	In another experiment the student found that 29.95 cm ³ of sulfuric acid of	Examiner only
()	concentration 0.100 mol dm ^{-3} neutralised 25.00 cm ^{3} of an aqueous solution of sodium hydroxide.	
	H_2SO_4 + 2NaOH \longrightarrow Na ₂ SO ₄ + 2H ₂ O	
	He incorrectly calculated the concentration of sodium hydroxide to be $0.120 \text{mol}\text{dm}^{-3}$.	
	Calculate the correct value and hence identify the student's error. [2]	
	Correct value = mol dm ⁻³	С 101
		B410U101 07
		10

Ionic	compounds are very useful in everyday life.
(a)	Sodium chloride is a white crystalline solid.
	Complete and label the diagram below to show the arrangement of ions in the sodium chloride lattice. [1]
(b)	For the ionic compound caesium chloride, state the coordination number of the caesium ion only . [1]
(C)	Magnesium oxide is formed from the reaction of magnesium with oxygen.
	Using outer electrons only, draw a dot and cross diagram to show the formation of magnesium oxide. [2]
(d)	Suggest, with a reason, whether you would expect the coordination of magnesium ions in magnesium oxide to be like that in sodium chloride or that in caesium chloride. [1]

				Examiner
(e)	(i)	One of the many uses of magnesium sulfate is as a muscle relaxant and it is one of the components in some mineral bath salts.	e	only
		Explain why many ionic compounds dissolve easily in water.	[2]	
	(ii)	State why barium sulfate would not be useful as a bath salt.	[1]	5
				B410U101 09
	(iii)	A bath contains 0.136 m ³ of water. Calculate the minimum mass of magnesium		
		sulfate needed to make a solution with a concentration of $220 \mathrm{mg}\mathrm{dm}^{-3}$. Show your working and record your answer to the appropriate number of		
			[3]	
		Mass =	g	
				11
				11

bena	viour.		
(a)	(i)	Write an equation for the reaction of lithium with water.	[1]
	(ii)	State the trend in reactivity down the group and use this to suggest how the observations made when rubidium reacts with water would differ from those for lithium.	[2]
	(iii)	Calculate the minimum mass of lithium required to produce 50.0 cm ³ of hydroge	
	(111)	gas at 25 °C and 1 atm.	[2]
		Mass =	g

(b)	A stu	ident noted that lithium and rubidium give similar colours in flame tests.		Examiner only
	(i)	State the colour seen.	[1]	
	(ii)	The flame colour for rubidium corresponds to a wavelength of 780 nm.		
		Calculate the energy released, in $kJ mol^{-1}$, when this colour is observed.	[3]	
				B410U101
		Energy released =	. kJ mol ⁻¹	ш.,
11		© WJEC CBAC Ltd. (B410U10-1)	urn over.	

			Examiner
(C)	(i)	Give the electronic structure of the lithium ion formed by the loss of one electron. [1	only
	(ii)	Give the meaning of the term first ionisation energy.	1
	(iii)	Explain why the first ionisation energies of lithium and rubidium are very different. [2	
(d)	The	flame colours of lithium and rubidium are due to their emission of visible light.	
	is in	hydrogen emission spectrum consists of several series of lines. State which series the visible region and explain why this series cannot be used to calculate the first sation energy of the hydrogen atom.	3]
			16
12			
		© WJEC CBAC Ltd. (B410U10-1)	

BLANK PAGE

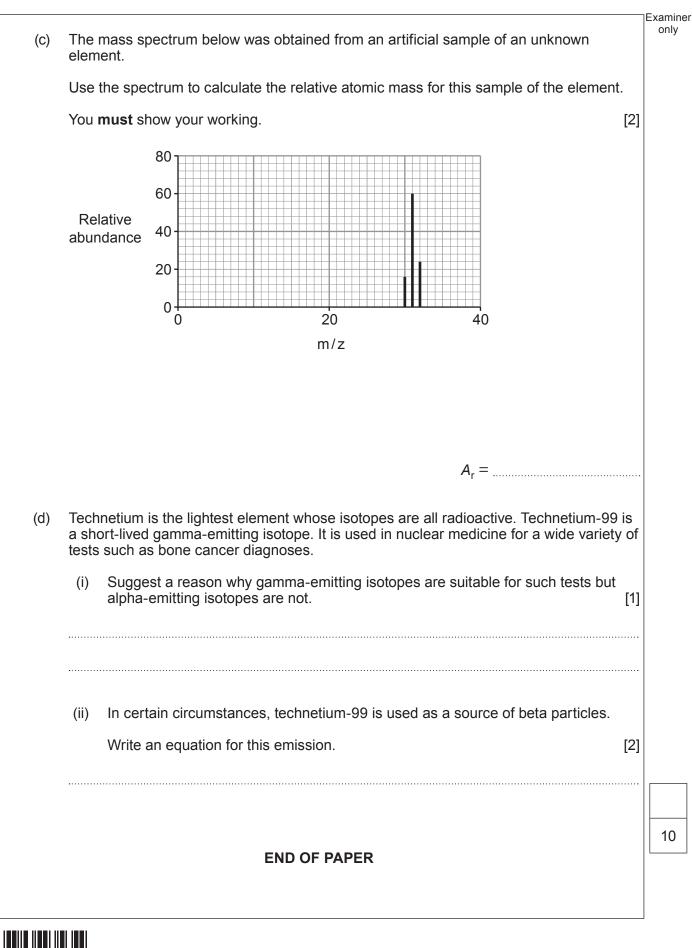
PLEASE DO NOT WRITE ON THIS PAGE

	Exami only
0. Many essential industrial processes, like the production of ammonia, are revers	ible reactions.
$N_2(g)$ + $3H_2(g)$ \implies $2NH_3(g)$ $\Delta H = -92.4 \text{ kJ mol}$	-1
The yield for such reactions is lower than desirable because a dynamic equilibri	um is reached.
(a) Give the meaning of the term dynamic equilibrium.	[1]
]
14 © WJEC CBAC Ltd (B410U10-1)	

(b)	Use Le Chatelier's principle to explain the ideal temperature and pressure conditions needed to produce the maximum yield of ammonia. Explain why these conditions need to be adapted to achieve the optimum yield in the industrial process.						
	Recall of the specific conditions for the process is not required.	[6 QER]					

			ΠE>
(c) A 0	Amm oxida	nonia is converted to nitric acid in a multi-step process. The first stage involves the ation of ammonia to produce a mixture of nitrogen monoxide and water.	
	(i)	Balance the equation for this reaction. [1]
		NH ₃ +	
((ii)	Under certain conditions an 80% conversion of ammonia to nitrogen monoxide is possible.	
		Calculate the minimum mass of ammonia required to produce 12000 tonnes of nitrogen monoxide. [2	2]
		Mass of ammonia =tonnes	s
(1	(iii)	Nitric acid is a strong acid. Calculate the pH of 500 cm^3 of an aqueous solution of nitric acid containing 2.05×10^{23} hydrogen ions. [3	
		pH =	

(iv)	Ammonium nitrate is easily dissolved in water to produce ammonium ions (NH_4 and nitrate ions. A solution of ammonium ions behaves as a weak acid.		Examiner only
	I. Give the meaning of the term acid.	[1]	
	II. Suggest an equation to show the action of an ammonium ion as a weak acid.	[1]	
			15


11.	(a)	Write a general equation for the thermal decomposition of a Group 2 metal carbonate, using M to represent the metal. [1]	TExamine only
	(b)	State the trend in ease of decomposition for Group 2 metal carbonates down the group. [1]	
	(C)	0.490 g of an unknown Group 2 metal carbonate decomposed completely at 790 °C and 1 atm. 425 cm^3 of carbon dioxide gas was produced. Use the data to calculate the relative formula mass (M_r) of the metal carbonate and hence deduce the identity of the metal. [4]	
		<i>M</i> _r = Metal	
	18	© WJEC CBAC Ltd. (B410U10-1)	

(d)	They	udent was investigating the thermal decomposition of another metal carbonate. / decided that they would heat the metal carbonate until it had all decomposed ar find the loss in mass.		Examine only
	(i)	Suggest how the student confirmed that all of the metal carbonate had decomposed.	[1]	
	(ii)	The student carried out the experiment and weighed by difference using a 2 decimal place balance. They determined the loss in mass to be 0.47 g. Calculate the percentage error in their mass.	[1]	
			[,]	
		Percentage error =	. %	
				8

(a) Giv	e the meaning of the term relative atomic mass.	[2]
(b) The A , I	e diagram shows one type of mass spectrometer and the paths of three partic 3 and C.	eles,
(i)	State the purpose of the magnet.	[1]
(ii)	B and C are particles of two different elements. State why particle C is not detected.	[1]
(iii)	Particles A and B are of identical mass. Suggest why particle A has been deflected far more than particle B .	[1]

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
	······	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

B410U10-1A

S23-B410U10-1A

TUESDAY, 16 MAY 2023 - MORNING

CHEMISTRY – AS component 1 Data Booklet

Avogadro constant	$N_A = 6.02 \times 10^{23} \text{mol}^{-1}$
molar gas constant	$R = 8.31 \text{ Jmol}^{-1} \text{K}^{-1}$
molar gas volume at 273 K and 1 atm	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$
molar gas volume at 298 K and 1 atm	$V_m^{'''}$ = 24.5 dm ³ mol ⁻¹
Planck constant	$h^{'''} = 6.63 \times 10^{-34} \mathrm{Js}$
speed of light	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
density of water	$d = 1.00 \mathrm{g}\mathrm{cm}^{-3}$
specific heat capacity of water	$c = 4.18 \mathrm{Jg}^{-1} \mathrm{K}^{-1}$
ionic product of water at 298 K	$K_w = 1.00 \times 10^{-14} \mathrm{mol}^2 \mathrm{dm}^{-6}$
fundamental electronic charge	$e^{''}$ = 1.60 × 10 ⁻¹⁹ C

temperature (K) = temperature (°C) + 273

 $1 \,\mathrm{dm^3} = 1000 \,\mathrm{cm^3}$ $1 \,\mathrm{m^3} = 1000 \,\mathrm{dm^3}$ 1 tonne = 1000 kg1 atm = $1.01 \times 10^5 \text{ Pa}$

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10 ⁻⁹	nano	n	10 ³	kilo	k
10 ⁻⁶	micro	μ	10 ⁶	mega	М
10 ⁻³	milli	m	10 ⁹	giga	G

Infrared absorption values

Bond	Wavenumber/cm ⁻¹
C — Br	500 to 600
C - CI	650 to 800
C-O	1000 to 1300
C = C	1620 to 1670
C=0	1650 to 1750
$C \equiv N$	2100 to 2250
C - H	2800 to 3100
O-H (carboxylic acid)	2500 to 3200 (very broad)
O—H (alcohol / phenol)	3200 to 3550 (broad)
N - H	3300 to 3500

13 C NMR chemical shifts relative to TMS = 0

Type of carbon	Chemical shift, δ (ppm)
$-\overset{ }{\overset{ }{\operatorname{c}}}-\overset{ }{\overset{ }{\operatorname{c}}}-\overset{ }{\overset{ }{\operatorname{c}}}$	5 to 40
R — C — Cl or Br	10 to 70
$\begin{array}{c} R - \begin{array}{c} C - \begin{array}{c} C \\ C \end{array} \\ \parallel \\ O \end{array} \\ \parallel \\ O \end{array}$	20 to 50
	25 to 60
	50 to 90
]c=c	90 to 150
$R - C \equiv N$	110 to 125
	110 to 160
R — C — (carboxylic acid / es O	ter) 160 to 185
R — C — (aldehyde / ketone) O	190 to 220

¹H NMR chemical shifts relative to TMS = 0

Type of proton	Chemical shift, δ (ppm)					
$-CH_3$	0.1 to 2.0 0.9 1.3 2.0 2.0 to 2.5 2.0 to 3.0					
$R-CH_3$						
R-CH ₂ -R						
$CH_3 - C \equiv N$						
CH ₃ -C						
-CH2-C						
	2.2 to 2.3					
HC-CI or HC-Br	3.1 to 4.3 3.3 to 4.3 4.5 *					
HC-O						
R-OH						
-c = CH	4.5 to 6.3					
-c = CH - CO	5.8 to 6.5					
CH=C	6.5 to 7.5					
<i>—</i> н	6.5 to 8.0					
О ОН	7.0 *					
<pre></pre>	9.8 *					
R-COH	11.0 *					

*variable figure dependent on concentration and solvent

THE PERIODIC TABLE

	O A) E		0, 5	8, UO		⁽²⁾			
0	4.00 Helium 2	20.2 Neon 10	40.0 Argon 18	83.8 Kr S6 36	131 Xenon 54	(222) Rn Radon 86			
2		19.0 Fluorine 9	35.5 Chlorine 17	79.9 Bromine 35	127 lodine 53	(210) At Astatine 85		175 Lu 71	(257) Lr Lawrencium 103
9	p block	16.0 Oxygen 8	32.1 S Sulfur 16	79.0 Se 34	128 Te Tellurium 52	(210) PO Polonium 84		173 Yb 70	(254) Nobelium 102
S	d d	p b C 12.0 C N Carbon Nitrogen	31.0 Phosphorus 15	74.9 As Arsenic	122 Sb 51	209 Bi Bismuth 83	╡ │┝────	169 Tm Thulium 69	(256) Md Mendelevium 101
4			28.1 Si 14	72.6 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		167 Er 68	(253) Fm 100
က		10.8 Boron 5	27.0 Aluminium 13	69.7 Ga Gallium 31	115 Indium 49	204 TI Thallium 81		165 Ho 67	(254) ES Einsteinium 99
			65.4 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	(251) Cf Califonium 98	
				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	f block	159 Tb Terbium 65	(245) BK Berkelium 97
				58.7 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	fb	157 Gd Gadolinium 64	(247) Cm Ourium 96
	Group Key relative atomic number d block				103 Rhodium 45	192 Ir Iridium 77		(153) Eu Europium 63	(243) Am Americium 95
roup					101 Ruthenium 44	190 Osmium 76		150 Sm Samarium 62	(242) Pu Plutonium 94
Ъ С	Key	54.9 Mnn 25 25	98.9 TC Technetium	186 Re 75		(147) Promethium 61	(237) Neptunium 93		
		Ar Symbol Name Z		52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	184 W Tungsten 74		144 Neodymium 60	238 Uranium 92
				50.9 V Vanadium 23	92.9 Nbbium 41	181 Ta Tantalum 73		141 Pr 59	(231) Pa Protactinium 91
				47.9 Ti Titanium 22	91.2 Zr Zirconium 40	179 Hf Hafnium 72		140 Cerium 58	232 Th 90
			V	45.0 Sc 21	88.9 Yttrium 39	139 La Lanthanum 57	ACtinium 89	 Lanthanoid elements 	 Actinoid elements
0	÷	9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium 38	137 Ba Barium 56	(226) Ra Radium 88	► Lai eli	
~	s block Hydrogen 1.01	6.94 Li 3	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs Caesium 55	(223) Fr 87		
	Period	2	က	4	2J	9	~		
	Pe	© WJEC CE	BAC Ltd.	(B410U10	0-1A)				